In a sample of UO 2, the uranium has been enriched so that 3.0% of it is 235U. How long could the fissioning of the uranium in this 1.0 kg sample keep a 100 W lamp burning?

Respuesta :

Explanation:

Molecular mass of [tex]UO_{2}[/tex] is the sum of molecular mass of U and [tex]O_{2}[/tex] molecule.

             Molar mass of [tex]UO_{2}[/tex] = (238 + 32) g/mol

                                                                  = 270 g/mol

Hence, in 1 kg there are 1000 grams. So, total number of atoms given molecules present in 1 kg will be calculated as follows.

          [tex]\frac{1000 g}{270 g/mol} \times 6.023 \times 10^{23}atoms[/tex]

                     = [tex]2.229 \times 10^{24}[/tex]

Hence, number of [tex]^{235}U[/tex] = [tex]\frac{3}{100} \times 2.229 \times 10^{24}[/tex]

                                            = [tex]6.69 \times 10^{22}[/tex]

Now, let x seconds is required for burning 100 W lamp bulb. As 200 MeV is released per reaction.

             100 x =  [tex]6.69 \times 10^{22} \times 200 \times 10^{6} \times 1.6 \times 10^{-19}[/tex]

                    x = [tex]21.4 \times 10^{9}[/tex] sec

Converting this value of x into years as follows.

                       x = [tex]\frac{21.4 \times 10^{9}}{3600 \times 24 \times 365}[/tex]

                    x = [tex]6.8 \times 10^{2}[/tex] years

Thus, we can conclude that fissioning of the uranium in given situation requires [tex]6.8 \times 10^{2}[/tex] years to keep a 100 W lamp burning.