Respuesta :

Answer:

f'(x)= [tex]\frac{1}{\sqrt{1-x^{2} } }[/tex]

Step-by-step explanation:

As khown the derivative of arcsin(x) is;

f'(x)= [tex]\frac{1}{\sqrt{1-x^{2} } }[/tex]

Answer:

1 /√( 1 - x^2).

Step-by-step explanation:

y = arcsin x

x = sin y

dx/dy = cos y

dy/dx = 1 / cos y

Now cos y = √( 1 - sin^2 y)

but sin y = x so

cos y = √( 1 - x^2).

So dy/dx = 1 / √( 1 - x^2).