The position of an object at time t is given by s(t) = -8 - 9t. Find the instantaneous velocity at t = 1 by finding the derivative. plz show work

Respuesta :

Answer:

The instantaneous velocity at t = 1 will be:

  • [tex]\frac{d}{dt}\left(-8-9t\right)=-9[/tex]

Step-by-step explanation:

Given the position of an object at a time [tex]t[/tex]

[tex]s\left(t\right)=-8-9t[/tex]

As we know that determining the derivative of the position function with respect to time t would give us the instantaneous velocity, so

[tex]\frac{ds}{dt}=\frac{d}{dt}\left(-8-9t\right)[/tex]

Applying the sum/difference rule:

[tex]\left(f\pm g\right)'=f\:'\pm g'[/tex]

[tex]\frac{ds}{dt}=-\frac{d}{dt}\left(8\right)-\frac{d}{dt}\left(9t\right)[/tex]

as

[tex]\frac{d}{dt}\left(8\right)=0[/tex]    ∵ [tex]\frac{d}{dx}\left(a\right)=0[/tex]

and

[tex]\frac{d}{dt}\left(9t\right)=9[/tex]   ∵ [tex]\mathrm{Take\:the\:constant\:out}:\quad \left(a\cdot f\right)'=a\cdot f\:'[/tex]  and [tex]\frac{d}{dt}\left(t\right)=1[/tex]

so the expression becomes

[tex]\frac{ds}{dt}=-\frac{d}{dt}\left(8\right)-\frac{d}{dt}\left(9t\right)[/tex]

   [tex]=-0-9[/tex]

   [tex]=-9[/tex]

As the derivative is constant.

Therefore, the instantaneous velocity at t = 1 will be:

  • [tex]\frac{d}{dt}\left(-8-9t\right)=-9[/tex]