Respuesta :
Answer:
- Coordinate of 0 = [tex]\bigg( \dfrac{5a-b}{5},\:\dfrac{5a+b}{5}\bigg)[/tex]
Step-by-step explanation:
- Let AOB be the line segment
- Point 'O' divides the line segment into m:n = 3:2
Given:
- Coordinate of a = (a+b, a-b)
- Coordinate of b = (a-b, a+b)
- Ratio = 3:2
ToFind:
- Coordinate of 0 (zero)
Solution:
ATQ,
- [tex]\dfrac{m}{n}=\dfrac{3}{2}[/tex]
- Coordinate of a = (x[tex]_{1}[/tex], y[tex]_{1}[/tex])
- Coordinate of b = (x[tex]_{2}[/tex], y[tex]_{2}[/tex])
As we know that,
[tex]\implies\:\:x = \dfrac{mx_{2} + nx_{1}}{m + n}[/tex]
[tex]\implies\:\:x = \dfrac{(a-b)3 + (a+b)2}{3+2}[/tex]
[tex]\implies\:\:x = \dfrac{3a - 3b + 2a + 2b}{5}[/tex]
[tex]\implies\:\:\red{x = \dfrac{5a - b}{5}}[/tex]
Similarly,
[tex]\implies\:\:y = \dfrac{my_{2}+ny_{1}}{m+n}[/tex]
[tex]\implies\:\:y = \dfrac{(a+b)3+(a-b)2}{3+2}[/tex]
[tex]\implies\:\:y = \dfrac{3a+3b+2a-2b}{5}[/tex]
[tex]\implies\:\:\red{y = \dfrac{5a+b}{5}}[/tex]
Hence,
Coordinate of 0 is [tex]\blue{\bigg( \dfrac{5a-b}{5},\:\dfrac{5a+b}{5}\bigg)}[/tex]