Respuesta :

Answer:

A

Step-by-step explanation:

[tex]\frac{(3x^{2} )^\frac{1}{2} }{3^\frac{1}{2} } =3[/tex]

[tex](3x^2)^\frac{1}{2} = 3^\frac{1}{2} x[/tex]

Remember that [tex]\frac{x^b}{x^c} =[/tex]x^(b-c)

Using that [tex]\frac{3^\frac{1}{2}x }{3^\frac{1}{2} }[/tex]=3^(1/2x-1/2)=3^((x-1)/2)

[tex]3^\frac{x-1}{2} =3^1[/tex]

So we can say: [tex]\frac{x-1}{2} =1[/tex], because the bases are the same

We can multiply both sides of the equation by 2. We get x-1=2, and x=3. Which is A.