contestada

C
Which points are reflections of each other across the y-axis?
8
6
1 2
24
-9 -6 -4 -2
-2
2
ܘܠܐ
6 8 x
-4
-6
-8
(-7 -3) and (7-3)
(-5 4) and (5.-4)
(1, -8) and (18)

C Which points are reflections of each other across the yaxis 8 6 1 2 24 9 6 4 2 2 2 ܘܠܐ 6 8 x 4 6 8 7 3 and 73 5 4 and 54 1 8 and 18 class=

Respuesta :

Answer:

[tex](a)\ (-7,-3)\ \&\ (7,-3)[/tex]

Step-by-step explanation:

Given

Options a, b and c

Required

Points that are reflections across y-axis

The rule of reflection across the y-axis is:

[tex](x,y) \to (-x,y)[/tex]

Testing the given options:

[tex](a)\ (-7,-3)\ \&\ (7,-3)[/tex]

Rule: [tex](x,y) \to (-x,y)[/tex]

[tex](-7,-3) \to (-(-7),-3)[/tex]

[tex](-7,-3) \to (7,-3)[/tex]

This is true, because the actual reflection equals the given reflection

[tex](b)\ (-5,4)\ \&\ (5,-4)[/tex]

Rule: [tex](x,y) \to (-x,y)[/tex]

[tex](-5,4) \to (-(-5),4)[/tex]

[tex](-5,4) \to (5,4)[/tex]

This is not true, because the actual reflection does not equal to the given reflection

[tex](c)\ (1,-8)\ \&\ (1,8)[/tex]

Rule: [tex](x,y) \to (-x,y)[/tex]

[tex](1,-8) \to (-1,-8)[/tex]

This is not true, because the actual reflection does not equal to the given reflection

Hence

[tex](a)\ (-7,-3)\ \&\ (7,-3)[/tex] is a reflection of each other across y axis