Respuesta :

Answer:

[tex]a=12\text{ or } -4[/tex]

Step-by-step explanation:

The distance formula is given by:

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2[/tex]

We are given the two points (4, -1) and (a, 5). The distance between them is 10.

Let (4, -1) be (x₁, y₁) and let (a, 5) be (x₂, y₂). Substitute:

[tex]10=\sqrt{(a-4)^2+(5-(-1))^2}[/tex]

Solve for a. Square both sides and simplify:

[tex]100=(a-4)^2+(6)^2[/tex]

Simplify:

[tex]64=(a-4)^2[/tex]

Take the square root of both sides. Since we are taking an even root, we will need plus/minus. Hence:

[tex]\pm\sqrt{64}=\pm8=a-4[/tex]

Solve for a:

[tex]a-4=8\Rightarrow a=12\text{ or } a-4=-8\Rightarrow a=-4[/tex]

So, our two possible points are (12, 5) or (-4, 5).