Respuesta :
Answer:
Solution given:
m∠ADB=(4x−12)°
m∠CDB=(3x+6)°
m∠ADC =?
Since diagonal BD bisect the angle <ADC
so
m∠ADB= m∠ADC
(4x-12)°=(3x+6)°
4x-3x=6-12
x=12+6
x=18°
again.
<ADB=m∠ADB+ m∠ADC=4×18-12+3×18+6=120°
So
the m∠ADC =120°

As it's a rhoumbus angles are equal
- m<ADB=m<CDB
- 4x-12=3x+6
- x=18
m<ADC
- 4x-12+3x+6
- 7x-6
- 7(18)-6
- 126-6
- 120°
